## WEEKLY TEST TYJ-02 TEST - 6 RAJ PUR ROAD SOLUTION Date 01-09-2019

## [PHYSICS]

1. $\quad$ Average speed $=\frac{\text { total distance covered }}{\text { total time taken }}$
$v_{\text {av. }}=\frac{\frac{x}{2}+\frac{x}{2}}{\frac{x / 2}{40}+\frac{x / 2}{60}}=\frac{x}{\left(\frac{x}{80}+\frac{x}{120}\right)}$
$=\frac{80 \times 120}{(120+80)}=48 \mathrm{~km} / \mathrm{h}$
2. $200=u \times 2-(1 / 2) a(2)^{2}$ or $u-a=100$
$200+220=u(2+4)-(1 / 2)(2+4)^{2} a$
or $u-3 a=70$
Solving eqns. (i) and (ii), we get; $a=15 \mathrm{~cm} / \mathrm{s}^{2}$ and $u=115 \mathrm{~cm} / \mathrm{s}$.
Further, $\mathrm{v}=\mathrm{u}-\mathrm{at}=115-15 \times 7=10 \mathrm{~cm} / \mathrm{sec}$.
3. When a body slides on an inclined plane, component of weight along the plane produces an acceleration
$\mathrm{a}=\frac{\mathrm{mg} \sin \theta}{\mathrm{m}}=\mathrm{g} \sin \theta=$ constt.
If $s$ be the length of the inclined plane, then
$\mathrm{s}=0+\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2} \mathrm{~g} \sin \theta \times \mathrm{t}^{2}$
$\therefore \quad \frac{\mathrm{s}^{\prime}}{\mathrm{s}}=\frac{\mathrm{t}^{\prime 2}}{\mathrm{t}^{2}}$ or $\frac{\mathrm{s}}{\mathrm{s}^{\prime}}=\frac{\mathrm{t}^{2}}{\mathrm{t}^{\prime 2}}$
Given $t=4 \sec$ and $s^{\prime}=\frac{s}{4}$
$\therefore \quad \mathrm{t}^{\prime}=\mathrm{t} \sqrt{\frac{\mathrm{s}^{\prime}}{\mathrm{s}}}=4 \sqrt{\frac{\mathrm{~s}}{4 \mathrm{~s}}}=\frac{4}{2}=2 \mathrm{sec}$
4. Given that; $a=3 t+4$ or $\frac{d v}{d t}=3 t+4$
$\therefore \quad \int_{0}^{v} d v=\int_{0}^{t}(3 t+4) d t$ or $v=\frac{3}{2} t^{2}+4 t$
$\mathrm{v}=\frac{3}{2}(2)^{2}+4(2)=14 \mathrm{~ms}^{-1}$
5. For first body :
$\frac{1}{2} \mathrm{gt}^{2}=176.4$ or $\quad \mathrm{t}=\sqrt{\frac{176.4 \times 2}{10}}$
or $t=5.9 \mathrm{~s}$
For second body : $\mathrm{t}=3.9 \mathrm{~s}$
$\mathrm{u}(3.9)+\frac{1}{2} \mathrm{~g}(3.9)^{2}=176.4$
$3.9 u+\frac{10}{2}(3.9)^{2}=176.4$
or $u=24.5 \mathrm{~m} / \mathrm{s}$
6. The resultant velocity of the boat and river is $1.0 \mathrm{~km} / 0.25 \mathrm{~h}$
$=4 \mathrm{~km} / \mathrm{h}$.
Velocity of the rive $=\sqrt{5^{2}-4^{2}}=3 \mathrm{~km} / \mathrm{h}$
7. Let he be the height of the tower.

Using $v^{2}-u^{2}=2$ as, we get;
Here, $u=u, a=-g, s=-h$ and $v=-3 u$ (upward direction $+v e$ )
$\therefore \quad 9 u^{2}-u^{2}=2 g h$ or $h=4 u^{2} / g$
8. $t=\sqrt{\frac{2 h}{g}}$
$s=10 \times \frac{t}{2}-\frac{1}{2} g \times \frac{t^{2}}{4}=5 \sqrt{\frac{2 h}{g}}-\frac{g}{8} \frac{2 h}{g}$
$v^{2}-u^{2}=2 g h$ or $100=2 g h$ or $10=\sqrt{2 g h}$
$s=\sqrt{\frac{2 g h \times 2 h}{4 \times g}}-\frac{h}{4}=h-\frac{h}{4}=\frac{3 h}{4}$
9. $t=\frac{1}{u+v}=\frac{1}{\frac{1}{t_{1}}+\frac{l}{t_{2}}}$
or $\frac{1}{t}+\frac{1}{t_{1}}+\frac{1}{t_{2}} \quad$ or $\quad t=\frac{t_{1} t_{2}}{\left(t_{1}+t_{2}\right)}$
10. For first body :
$v^{2}=u^{2}+2 g h$ or $(3)^{2}=0+2 \times 9.8 \times h$
or $\quad \mathrm{h}=\frac{(3)^{2}}{2 \times 9.8}=0.46 \mathrm{~m}$
For second body :
$v^{2}=(4)^{2}+2 \times 9.8 \times 0.46$
$\therefore \quad v=\sqrt{(4)^{2}+(2 \times 9.8 \times 0.46)}=5 \mathrm{~m} / \mathrm{s}$
11. Given $\mathrm{y}=0$

Distance travelled in 10 s ,
$S_{1}=\frac{1}{2} \mathrm{a} \times 10^{2}=50 \mathrm{a}$
Distance travelled in 20 s ,
$S_{2}=\frac{1}{2} a \times 20^{2}=200 a$
$\therefore \quad \mathrm{S}_{2}=4 \mathrm{~S}_{1}$
12. During the first 5 seconds of the motion, the acceleration is - ve and during the next 5 seconds it becomes positive. (Example : a stone thrown upwards, coming to momentary rest at the highest point). The distance covered remains same during the two intervals of time.
13. Gain in angular $K E=$ loss in $P E$

If $\mathrm{I}=$ length of the pole, moment of inertial of the pole about the edge $=M\left[\frac{\mathrm{I}^{2}}{12}+\frac{\mathrm{I}^{2}}{4}\right]=\frac{\mathrm{MI}^{2}}{3}$
Loss in potential energy $=\frac{\mathrm{Mgl}}{2}$
Gain in angular $K E=\frac{1}{2} I \omega^{2}=\frac{1}{2} \times \frac{\mathrm{Ml}^{2}}{3} \times \omega^{2}$
$\therefore \quad \frac{1}{2} \frac{\mathrm{MI}}{3} \omega^{2}=\frac{\mathrm{MgI}}{2} \quad$ or $\quad(\mid \omega)^{2}=3 \mathrm{gl}$
or $\quad \mid \omega=v=\sqrt{3 g \mid}$
$=\sqrt{3 \times 10 \times 30}=30 \mathrm{~ms}^{-1}$
14. Let the velocity of the scooter be $\mathrm{v} \mathrm{ms}^{-1}$. Then $(\mathrm{v}-10) 100=100$ or $\mathrm{v}=20 \mathrm{~ms}^{-1}$
15. Let $x$ be the distance between the particles after $t$ second. Then
$x=v t-\frac{1}{2} a t^{2}$
For $x$ to be maximum,
$\frac{d x}{d t}=0$
or $\quad v-a t=0$
or $\quad t=\frac{v}{a}$
Putting this value in eqn. (i), we get;
$x=v\left(\frac{v}{a}\right)-\frac{1}{2} a\left(\frac{v}{a}\right)^{2}=\frac{v^{2}}{2 a}$

## [CHEMISTRY]

16. 34 electrons
17. 
18. $\quad$ Bond orders are : $\mathrm{He}_{2}^{+}=0.5 ; \mathrm{O}_{2}^{-}=1.5 ; \mathrm{NO}=2.5 ; \mathrm{C}_{2}^{2-}=3.0$
19. 

20
0.

XeF has 8 electrons in valence shell. In $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and $\mathrm{XeF}_{6}$, two sigma bonds, four sigma bonds and six sigma bonds are respectively formed. Hence, in $\mathrm{XeF}_{2} 3$ pairs of electrons are left, in $\mathrm{XeF}_{4} 2$ pairs of electron are left and in $\mathrm{XeF}_{6}$ only 1 pair of electron is left.
21. Each $\mathrm{C}^{1}$ and $\mathrm{C}^{2}$ are forming two sigma bonds. Hence, both are sp-hybridised.
22. CO has triple bond $: \stackrel{-}{\mathrm{C}} \equiv \stackrel{+}{\mathrm{O}}:, \mathrm{CO}_{2}$ has double bonds $\mathrm{O}=\mathrm{C}=\mathrm{O}$,
$\mathrm{CO}_{3}^{2-}$ has $\mathrm{C}-\mathrm{O}$ bond intermediate between single and double bond.
23. In methane C -atom is $\mathrm{sp}^{3}$-hybridized with 25 s -character. In ethene, it is $\mathrm{sp}^{2}$ with 33 s -character has to be less than 25 (actual value is 21.43)
24. Bond orders are : $\mathrm{O}_{2}^{-}=1.5, \mathrm{NO}=2.5, \mathrm{C}_{2}^{2-}=3.0$
25.



26.
27. Bond order of $\mathrm{N}_{2}^{2-}$ and $\mathrm{N}_{2}^{2+}$ is 2.

Bond order of $\mathrm{N}_{2}^{2-}$ and $\mathrm{N}_{2}^{2+}$ is 2.5
Bond order of $\mathrm{N}_{2}$ is 3
28. Bond orders of $\mathrm{O}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}$ and $\mathrm{O}_{2}^{+}$are 1,1.5, 2 and 2.5 respectively. (Please, refer to the text article no.

A甘AFAL CLASSES
CREATING SCHOLARS

