

WEEKLY TEST TYJ-02 TEST - 6 RAJPUR ROAD SOLUTION Date 01-09-2019

[PHYSICS]

1.		Average speed = $\frac{\text{total distance covered}}{\text{total time taken}}$
		$v_{av.} = \frac{\frac{\frac{x}{2} + \frac{x}{2}}{\frac{x/2}{40} + \frac{x/2}{60}} = \frac{x}{\left(\frac{x}{80} + \frac{x}{120}\right)}$
		$=\frac{80\times120}{(120+80)}=48 \text{ km/h}$
2.		$200 = u \times 2 - (1/2) a(2)^{2} \text{ or } u - a = 100 \qquad \dots(i)$ $200 + 220 = u(2 + 4) - (1/2) (2 + 4)^{2}a$
	or	u - 3a = 70(ii) Solving eqns. (i) and (ii), we get; $a = 15 \text{ cm/s}^2$ and $u = 115 \text{ cm/s}$.
3.		Further, $v = u - at = 115 - 15 \times 7 = 10$ cm/sec. When a body slides on an inclined plane, component of weight along the plane produces an acceleration
		$a = \frac{mg\sin\theta}{m} = g\sin\theta = constt.$
		If s be the length of the inclined plane, then
		$s = 0 + \frac{1}{2}at^2 = \frac{1}{2}g\sin\theta \times t^2$
	÷	$\frac{s'}{s} = \frac{t'^2}{t^2}$ or $\frac{s}{s'} = \frac{t^2}{t'^2}$
		Given t = 4 sec and $s' = \frac{s}{4}$
	÷	$t' = t\sqrt{\frac{s'}{s}} = 4\sqrt{\frac{s}{4s}} = \frac{4}{2} = 2 \sec t$
4.		Given that; $a = 3t + 4 \text{ or } \frac{dv}{dt} = 3t + 4$
	÷	$\int_0^v dv = \int_0^t (3t+4)dt \text{ or } v = \frac{3}{2}t^2 + 4t$
		$v = \frac{3}{2}(2)^2 + 4(2) = 14 \text{ ms}^{-1}$
5.		For first body :

AVIRAL CLASSES

R

$$\frac{1}{2}$$
gt² = 176.4 or $t = \sqrt{\frac{176.4 \times 2}{10}}$

or t = 5.9 s For second body : t = 3.9 s

8.

9.

$$u(3.9) + \frac{1}{2}g(3.9)^2 = 176.4$$

 $3.9u + \frac{10}{2}(3.9)^2 = 176.4$ or u = 24.5 m/s 6. The resultant velocity of the boat and river is 1.0 km/0.25 h = 4 km/h. Velocity of the rive $= \sqrt{5^2 - 4^2} = 3$ km/h

7. Let he be the height of the tower. Using $v^2 - u^2 = 2as$, we get; Here, u = u, a = -g, s = -h and v = -3u (upward direction + ve) \therefore $9u^2 - u^2 = 2gh$ or $h = 4u^2/g$

$$t = \sqrt{\frac{2h}{g}}$$

$$s = 10 \times \frac{t}{2} - \frac{1}{2}g \times \frac{t^{2}}{4} = 5\sqrt{\frac{2h}{g}} - \frac{g}{8}\frac{2h}{g}$$

$$v^{2} - u^{2} = 2gh \text{ or } 100 = 2gh \text{ or } 10 = \sqrt{2gh}$$

$$s = \sqrt{\frac{2gh \times 2h}{4 \times g}} - \frac{h}{4} = h - \frac{h}{4} = \frac{3h}{4}$$

$$t = \frac{1}{u + v} = \frac{1}{\frac{1}{t_{1}} + \frac{1}{t_{2}}}$$

or
$$\frac{1}{t} + \frac{1}{t_1} + \frac{1}{t_2}$$
 or $t = \frac{t_1 t_2}{(t_1 + t_2)}$

10. For first body : $v^2 = u^2 + 2gh$ or $(3)^2 = 0 + 2 \times 9.8 \times h$

or
$$h = \frac{(3)^2}{2 \times 9.8} = 0.46 \text{ m}$$

For second body : $v^2 = (4)^2 + 2 \times 9.8 \times 0.46$

$$\therefore$$
 v = $\sqrt{(4)^2 + (2 \times 9.8 \times 0.46)} = 5 \text{ m/s}$

11. Given y = 0 Distance travelled in 10 s,

$$S_1 = \frac{1}{2}a \times 10^2 = 50a$$

Distance travelled in 20 s,

$$S_2 = \frac{1}{2}a \times 20^2 = 200a$$

 \therefore S₂ = 4S₁

12. During the first 5 seconds of the motion, the acceleration is – ve and during the next 5 seconds it becomes positive. (Example : a stone thrown upwards, coming to momentary rest at the highest point). The distance covered remains same during the two intervals of time.

13. Gain in angular KE = loss in PE

If I = length of the pole, moment of inertial of the pole about the edge = $M \left[\frac{l^2}{12} + \frac{l^2}{4} \right] = \frac{Ml^2}{3}$

Loss in potential energy $=\frac{Mgl}{2}$ Gain in angular KE $=\frac{1}{2}I\omega^2 = \frac{1}{2} \times \frac{Ml^2}{3} \times \omega^2$

$$\therefore \quad \frac{1}{2} \frac{|\mathsf{VII}|}{3} \omega^2 = \frac{|\mathsf{VIII}|}{2} \quad \text{or} \quad (|\omega|)^2 = 3\mathsf{g}\mathsf{I}$$

or
$$l\omega = v = \sqrt{3gl}$$

 $=\sqrt{3\times10\times30}=30ms^{-1}$

14.Let the velocity of the scooter be v ms⁻¹. Then (v - 10)100 = 100 or v = 20 ms⁻¹15.Let x be the distance between the particles after t second. Then

$$x = vt - \frac{1}{2}at^2 \qquad \dots (i)$$

For x to be maximum,

$$\frac{dx}{dt} = 0$$

or
$$v - at = 0$$

or
$$t = \frac{v}{2}$$

Putting this value in eqn. (i), we get;

$$x = v \left(\frac{v}{a}\right) - \frac{1}{2}a \left(\frac{v}{a}\right)^2 = \frac{v^2}{2a}$$

[CHEMISTRY]

16. 34 electrons

17.

- 18. Bond orders are : $He_2^+ = 0.5$; $O_2^- = 1.5$; NO = 2.5; $C_2^{2-} = 3.0$
- 19.
- 20. XeF has 8 electrons in valence shell. In XeF₂, XeF₄ and XeF₆, two sigma bonds, four sigma bonds and six sigma bonds are respectively formed. Hence, in XeF₂ 3 pairs of electrons are left, in XeF₄ 2 pairs of electron are left and in XeF₆ only 1 pair of electron is left.
- 21. Each f C¹ and C² are forming two sigma bonds. Hence, both are sp-hybridised.
- 22. CO has triple bond $:\bar{C} \equiv O_2^+$, CO₂ has double bonds O=C=O,

 CO_3^{2-} has C–O bond intermediate between single and double bond.

23. In methane C-atom is sp³-hybridized with 25 s-character. In ethene, it is sp² with 33 s-character has to be less than 25 (actual value is 21.43)

γ

24. Bond orders are :
$$O_2^- = 1.5$$
, NO = 2.5, $C_2^{2-} = 3.0$

25.
$$O = \underbrace{\overset{\oplus}{N}}_{\alpha} = O$$
 $O \xrightarrow{\overset{\oplus}{N}}_{\beta} O$ $O \xrightarrow{\overset{\oplus}{N}}_{\gamma} O$; $\alpha > \beta >$

- 26.
- 27. Bond order of N_2^{2-} and N_2^{2+} is 2. Bond order of N_2^{2-} and N_2^{2+} is 2.5 Bond order of N_2 is 3
- 28. Bond orders of O_2^{2-}, O_2^{-}, O_2 and O_2^+ are 1, 1.5, 2 and 2.5 respectively. (Please, refer to the text article no. **AVISAL CLASSES** CREATING SCHOLARS
 WWW.aviral.co.in